Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.896
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11079, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745047

RESUMO

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Assuntos
Acetilglucosamina , Anti-Inflamatórios , Lipopolissacarídeos , Macrófagos Peritoneais , Fator de Necrose Tumoral alfa , Animais , Acetilglucosamina/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Inflamação/tratamento farmacológico , Masculino , Modelos Animais de Doenças
2.
Stem Cell Res Ther ; 15(1): 127, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693589

RESUMO

BACKGROUND: Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. METHODS: Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. RESULTS: We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). CONCLUSION: The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury.


Assuntos
Macrófagos Peritoneais , Células-Tronco Mesenquimais , Monócitos , Feminino , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Monócitos/metabolismo , Monócitos/citologia , Humanos , Macrófagos Peritoneais/metabolismo , Endométrio/lesões , Endométrio/metabolismo , Endométrio/citologia , Endométrio/patologia , Fagocitose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Eferocitose
3.
Mol Immunol ; 170: 110-118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653076

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Piroptose , Sepse , Linfócitos T Reguladores , Células Th17 , Animais , Piroptose/efeitos dos fármacos , Sepse/imunologia , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678669

RESUMO

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Assuntos
Flavonas , Lipopolissacarídeos , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Verapamil , Animais , Verapamil/farmacologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Flavonas/farmacologia , Flavonas/uso terapêutico , Camundongos , Fator de Transcrição STAT3/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612926

RESUMO

A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Peritônio , Macrófagos Peritoneais , Biomarcadores , Macrófagos , Microambiente Tumoral/genética , Fibrinogênio
6.
Theranostics ; 14(6): 2526-2543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646640

RESUMO

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Assuntos
Ácido Clodrônico , Pulmão , Macrófagos Peritoneais , Nanopartículas , Animais , Ácido Clodrônico/farmacologia , Ácido Clodrônico/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Pulmão/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição GATA6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Carbocianinas/química , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo
7.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607919

RESUMO

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Assuntos
Antígenos de Neoplasias , Carcinogênese , Macrófagos Peritoneais , Animais , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Feminino , Camundongos , Carcinogênese/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Apresentação Cruzada/imunologia , Linhagem Celular Tumoral , Fagossomos/metabolismo , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Actinas/metabolismo
8.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520688

RESUMO

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Assuntos
Toxina da Cólera , Estresse do Retículo Endoplasmático , Endorribonucleases , Interleucina-1beta , Proteínas Serina-Treonina Quinases , Interleucina-1beta/metabolismo , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Toxina da Cólera/farmacologia , Toxina da Cólera/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Lipopolissacarídeos/farmacologia , Retículo Endoplasmático/metabolismo
9.
J Immunol Res ; 2024: 7484490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455363

RESUMO

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF). As well, the pattern of pro- and anti-inflammatory cytokines mRNA expression in different groups of experimental and tumor-bearing animals was assessed. It was found that: (i) exposure of intact mice to GcMAF-RF results in the increased number of CD11b+/Ly-6C+ peritoneal macrophages and, at the same time, the expression pattern of cytokines in peritoneal macrophages switches from that characteristic of the mixed M1/M2 phenotype to that characteristic of the neutral M0 one; (ii) combination of Karanahan technology and GcMAF-RF treatment results in M0/M1 repolarization of TAS macrophages; (iii) in tumor-bearing mice, the response of peritoneal macrophages to such a treatment is associated with the induction of anti-inflammatory reaction, which is opposite to that in TAS macrophages.


Assuntos
Fatores Ativadores de Macrófagos , Macrófagos , Neoplasias , Proteína de Ligação a Vitamina D , Camundongos , Animais , Macrófagos Peritoneais/metabolismo , Citocinas/metabolismo , Neoplasias/patologia , Anti-Inflamatórios/metabolismo
10.
Front Immunol ; 15: 1357340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504975

RESUMO

In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.


Assuntos
Neoplasias Peritoneais , Peritônio , Humanos , Peritônio/metabolismo , Macrófagos Peritoneais , Macrófagos , Cavidade Peritoneal , Neoplasias Peritoneais/metabolismo , Estresse Oxidativo
11.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227394

RESUMO

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Assuntos
Antiprotozoários , Leishmania major , Antimoniato de Meglumina , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Animais , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/química
13.
Microbiol Spectr ; 12(1): e0347523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018982

RESUMO

IMPORTANCE: Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.


Assuntos
Fasciola hepatica , Sepse , Animais , Camundongos , Macrófagos Peritoneais/metabolismo , Lipopolissacarídeos/metabolismo , Fasciola hepatica/metabolismo , Escherichia coli/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Receptor 4 Toll-Like/metabolismo , Macrófagos
14.
Nat Immunol ; 25(1): 155-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102487

RESUMO

In mouse peritoneal and other serous cavities, the transcription factor GATA6 drives the identity of the major cavity resident population of macrophages, with a smaller subset of cavity-resident macrophages dependent on the transcription factor IRF4. Here we showed that GATA6+ macrophages in the human peritoneum were rare, regardless of age. Instead, more human peritoneal macrophages aligned with mouse CD206+ LYVE1+ cavity macrophages that represent a differentiation stage just preceding expression of GATA6. A low abundance of CD206+ macrophages was retained in C57BL/6J mice fed a high-fat diet and in wild-captured mice, suggesting that differences between serous cavity-resident macrophages in humans and mice were not environmental. IRF4-dependent mouse serous cavity macrophages aligned closely with human CD1c+CD14+CD64+ peritoneal cells, which, in turn, resembled human peritoneal CD1c+CD14-CD64- cDC2. Thus, major populations of serous cavity-resident mononuclear phagocytes in humans and mice shared common features, but the proportions of different macrophage differentiation stages greatly differ between the two species, and dendritic cell (DC2)-like cells were especially prominent in humans.


Assuntos
Macrófagos Peritoneais , Macrófagos , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Diferenciação Celular , Células Dendríticas
15.
J Toxicol Sci ; 48(12): 617-639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044124

RESUMO

Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.


Assuntos
Mesotelioma , Nanotubos de Carbono , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Macrófagos Peritoneais , Peritônio , Camundongos Endogâmicos C57BL , Fibrose , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Camundongos Knockout , Microambiente Tumoral
16.
Front Immunol ; 14: 1290191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035074

RESUMO

Macrophages are highly heterogeneous immune cells with a role in maintaining tissue homeostasis, especially in activating the defense response to bacterial infection. Using flow cytometric and single-cell RNA-sequencing analyses of peritoneal cells, we here show that small peritoneal macrophage and immature macrophage populations are enriched in histamine-deficient (Hdc -/-) mice, characterized by a CD11bmiF4/80loCCR2+MHCIIhi and CD11bloF4/80miTHBS1+IL-1α+ phenotype, respectively. Molecular characterization revealed that immature macrophages represent an abnormally differentiated form of large peritoneal macrophages with strong inflammatory properties. Furthermore, deficiency in histamine signaling resulted in significant impairment of the phagocytic activity of peritoneal macrophage populations, conferring high susceptibility to bacterial infection. Collectively, this study reveals the importance of histamine signaling in macrophage differentiation at the molecular level to maintain tissue homeostasis, offering a potential therapeutic target for bacterial infection-mediated diseases.


Assuntos
Histamina , Macrófagos , Camundongos , Animais , Macrófagos Peritoneais , Diferenciação Celular , Fagócitos
17.
Front Immunol ; 14: 1239592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965323

RESUMO

Persistent inflammation and associated pain significantly impact individuals' quality of life, posing substantial healthcare challenges. Proinflammatory cytokines, released by activated macrophages, play crucial roles in the development of chronic inflammatory conditions such as rheumatoid arthritis. To identify and evaluate potential therapeutic interventions targeting this process for mitigating inflammation and pain, we created myeloid cell-specific knockout of Vamp3 (vesicle-associated membrane protein 3) mice (Vamp3 Δmyel) by crossing LysM-Cre mice with newly engineered Vamp3flox/flox mice. Bone marrow-derived macrophages and peritoneal resident macrophages from Vamp3 Δmyel mice exhibited a significant reduction in TNF-α and IL-6 release compared to control mice. Moreover, Vamp3 deficiency led to decreased paw edema and ankle joint swelling induced by intraplantar injection of complete Freund's adjuvant (CFA). Furthermore, Vamp3 depletion also mitigated CFA-induced mechanical allodynia and thermal hyperalgesia. Mechanistically, Vamp3 loss ameliorated the infiltration of macrophages in peripheral sites of the hind paw and resulted in reduced levels of TNF-α and IL-6 in the CFA-injected paw and serum. RT-qPCR analysis demonstrated downregulation of various inflammation-associated genes, including TNF-α, IL-6, IL-1ß, CXCL11, TIMP-1, COX-2, CD68, and CD54 in the injected paw at the test day 14 following CFA administration. These findings highlight the novel role of Vamp3 in regulating inflammatory responses and suggest it as a potential therapeutic target for the development of novel Vamp-inactivating therapeutics, with potential applications in the management of inflammatory diseases.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Citocinas/metabolismo , Adjuvante de Freund , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Inflamação/tratamento farmacológico , Macrófagos Peritoneais/metabolismo , Dor/induzido quimicamente , Qualidade de Vida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Associada à Membrana da Vesícula
18.
Toxins (Basel) ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37888647

RESUMO

Macrophage plasticity is a fundamental feature of the immune response since it favors the rapid and adequate change of the functional phenotype in response to the pathogen or the microenvironment. Several studies have shown that Crotoxin (CTX), the major toxin of the Crotalus durissus terrificus snake venom, has a long-lasting antitumor effect both in experimental models and in clinical trials. In this study, we show the CTX effect on the phenotypic reprogramming of macrophages in the mesenchymal tumor microenvironment or those obtained from the peritoneal cavity of healthy animals. CTX (0.9 or 5 µg/animal subcutaneously) administered concomitantly with intraperitoneal inoculation of tumor cells (1 × 107/0.5 mL, injected intraperitoneally) of Ehrlich Ascitic Tumor (EAT) modulated the macrophages phenotype (M1), accompanied by increased NO• production by cells from ascites, and was evaluated after 13 days. On the other hand, in healthy animals, the phenotypic profile of macrophages was modulated in a dose-dependent way at 0.9 µg/animal: M1 and at 5.0 µg/animal: M2; this was accompanied by increased NO• production by peritoneal macrophages only for the dose of 0.9 µg/animal of CTX. This study shows that a single administration of CTX interferes with the phenotypic reprogramming of macrophages, as well as with the secretory state of cells from ascites, influencing events involved with mesenchymal tumor progression. These findings may favor the selection of new therapeutic targets to correct compromised immunity in different systems.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Crotoxina/farmacologia , Ascite , Macrófagos , Macrófagos Peritoneais , Crotalus , Venenos de Crotalídeos/farmacologia
19.
PLoS One ; 18(10): e0291950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792774

RESUMO

System xc-, encoded by Slc7a11, is an antiporter responsible for exporting glutamate while importing cystine, which is essential for protein synthesis and the formation of thiol peptides, such as glutathione. Glutathione acts as a co-factor for enzymes responsible for scavenging reactive oxygen species. Upon exposure to bacterial products, macrophages exhibit a rapid upregulation of system xc-. This study investigates the impact of Slc7a11 deficiency on the functionality of peritoneal and bone marrow-derived macrophages. Our findings reveal that the absence of Slc7a11 results in significantly reduced glutathione levels, compromised mitochondrial flexibility, and hindered cytokine production in bone marrow-derived macrophages. Conversely, system xc- has a lesser impact on peritoneal macrophages in vivo. These results indicate that system xc- is essential for maintaining glutathione levels, mitochondrial functionality, and cytokine production, with a heightened importance under atmospheric oxygen tension.


Assuntos
Cistina , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Cistina/metabolismo , Antiporters , Macrófagos Peritoneais/metabolismo , Glutationa/metabolismo , Citocinas/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(9): 807-815, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37732576

RESUMO

Objective To explore whether nano-vesicles derived from M1 macrophages (M1-NVs) can reprogram M2 macrophages into M1 phenotype and further affect the development of endometriosis (EMS). Methods Extracellular vesicles (EVs) were isolated from macrophage culture supernatant by differential centrifugation. Immunofluorescence cytochemistry was used to detect the expression of vimentin, CD31 and F4/80 to identify endometrial stromal cells (EMS-ESCs), HUVECs and polarized peritoneal macrophages of EMS patients. M1-NVs were prepared by filtering cell suspension through (5, 1, 0.4, 0.22)µm polycarbonate membrane filters after syringe aspiration at 0-4 DegreesCelsius. Flow cytometry was used to analyze the polarization of RAW264.7 mouse peritoneal macrophages in vitro, and reverse transcription PCR (RT-qPCR) was employed to detect mRNA expression of VEGF, CD86, interleukin-6 (IL-6), IL-1ß, tumor necrosis factor α (TNF-α), arginase 1 (Arg1), CD163, CD206, and IL-10. PKH67-labeled M1-NVs were co-cultured with EMS-ESCs, HUVECs and macrophages. And tubule formation experiments were conducted to assess the impact of M1-NVs on the tubule formation of HUVECs. TranswellTM invasion and migration assays were employed to evaluate changes in the migration and invasion abilities of EMS-ESCs. Results By monitoring the contents of NVs, it was found that NVs contained much more protein and other bioactive particles than the same amount of EVs; immunofluorescence staining results showed that PKH67 labeled M1-NVs were internalized by EMS-ESCs, HUVECs and macrophages when co-cultured. The results of flow cytometry and RT-qPCR multi-target analysis showed that after treatment with different concentrations of M1-NVs or M0-NVs, 20 µg/mL of M1-NVs could effectively reprogram M2 macrophages into M1 macrophages compared with M0-NVs. TransewellTM results showed that compared with the blank group and M0-NVs group, the number of EMS-ESCs migrating from the upper chamber to the lower chamber after M1-NV treatment was significantly reduced, while the number of EMS-ESCs treated with M2NVs increased significantly. The invasion situation was similar to the migration situation, indicating that M1-NVs directly or indirectly inhibited invasion, migration and tubule formation of EMS-ESCs in vitro. Conclusion M1-NVs reprogrammes M2 macrophages into M1 macrophages by internalization of primary cells and macrophages, thereby inhibiting invasion, migration and angiogenesis of EMS-ESCs, and further hindering the occurrence and development of EMS.


Assuntos
Endometriose , Feminino , Humanos , Animais , Camundongos , Macrófagos , Macrófagos Peritoneais , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA